Some results related to the Kulli-Sigarkanti conjecture

dc.contributor.authorKeith Driscoll
dc.contributor.authorElliot Krop
dc.date.accessioned2024-05-21T13:41:12Z
dc.date.available2024-05-21T13:41:12Z
dc.description.abstractWe give two proof of the following type bound: for any graph $G$, if $\gamma^{-1}(G)$ is the inverse domination number of $G$ and $\alpha(G)$ is the independence number of $G$, then there exists constants $c$ and $d$ so that $\gamma^{-1}(G)\le c\alpha(G)-d$. In particular, we show that under the same conditions, $\gamma^{-1}(G)\le \alpha(G)+\gamma(G)-2$. Furthermore, we prove that the inequality $\gamma^{-1}(G)\le \alpha(G)$ is true for all $G$, if it is true for the family of graphs which are inverse domination vertex critical, inverse domination critical with respect to edge contraction, but not inverse domination edge critical. \\
dc.identifier.urihttps://hdl.handle.net/20.500.12951/1005
dc.titleSome results related to the Kulli-Sigarkanti conjecture
dc.typeJournal Article, Academic Journal
dcterms.bibliographicCitationCongressus Numerantium/Utilitas Mathematica Publishing, Inc. 231, 137-142, (December 2018)
Files
Collections