On Eternal domination and Vizing-type inequalities

dc.contributor.authorElliot Krop
dc.contributor.authorKeith Driscoll
dc.contributor.authorWilliam F Klostermeyer
dc.contributor.authorColton R. Magnant
dc.contributor.authorPatrick Taylor
dc.date.accessioned2024-05-21T13:41:22Z
dc.date.available2024-05-21T13:41:22Z
dc.description.abstractWe show sharp inequalities of Vizing-type for eternal domination. Namely, we prove that for any graphs $G$ and $H$, $\gamma^\infty(G\boxtimes H)\ge \alpha(G)\gamma^\infty(H)$, where $\gamma^\infty$ is the eternal domination function, $\alpha$ is the independence number, and $\boxtimes$ is the strong product of graphs. This addresses a question of Klostermeyer and Mynhardt. We also show some families of graphs attaining the strict inequality $\gamma^\infty(G\square H)>\gamma^\infty(G)\gamma^\infty(H)$ where $\square$ is the Cartesian product. For the eviction model of eternal domination, we show a sharp upper bound for $e^\infty(G\boxtimes H)$.
dc.identifier.urihttps://hdl.handle.net/20.500.12951/1112
dc.titleOn Eternal domination and Vizing-type inequalities
dc.typeJournal Article, Professional Journal
dcterms.bibliographicCitationAKCE International Journal of Graphs and Combinatorics 17(3), 708-712, (April 24, 2020)
Files
Collections